अतुल माहेश्वरी छात्रवृत्ति परीक्षा -2025स्कॉलरशिपकक्षा-12 मॉडल पेपरकक्षा-11 मॉडल पेपरकक्षा-10 मॉडल पेपरकक्षा-9 मॉडल पेपरबीए बीएससी मॉडल पेपरIGNOU Solved Guess Papersइग्नू पाठ्यक्रमइग्नू के पिछले वर्षों के प्रश्नपत्रइग्नू अध्ययन सामग्रीरिजल्टअन्य

The energy of an electron in an orbit in hydrogen atom is 3-4 eV. Its angular momentum in the orbit will be :

On: February 20, 2026 2:29 PM
Follow Us:

The energy of an electron in an orbit in hydrogen atom is 3-4 eV. Its angular momentum in the orbit will be :
(A) (h/2π
(B) 2h/π
(C) h/π
(D) h/2π

Step 1: Recall formulas for hydrogen atom (Bohr model)

  1. Energy of electron in nth orbit:

En=13.6eVn2E_n = – \frac{13.6\,\text{eV}}{n^2}

where n=1,2,3,n = 1,2,3,\dots

  1. Angular momentum in nth orbit:

Ln=nh2πL_n = n \frac{h}{2\pi}

Step 2: Find approximate nnn from energy

We are given E34 eVE \approx 3\text{–}4 \text{ eV}.En=13.6n2n2=13.6EnE_n = -\frac{13.6}{n^2} \Rightarrow n^2 = \frac{13.6}{|E_n|}

Take the average E3.4 eVE \approx 3.4\ \text{eV}:n2=13.63.4=4n=2n^2 = \frac{13.6}{3.4} = 4 \Rightarrow n = 2

So the electron is in the second orbit.

Step 3: Compute angular momentum

Ln=nh2π=2h2π=hπL_n = n \frac{h}{2\pi} = 2 \frac{h}{2\pi} = \frac{h}{\pi}

Step 4: Answer

Angular momentum = h/π

Join WhatsApp

Join Now

Join Telegram

Join Now

Leave a comment

error: Content is protected !!