अतुल माहेश्वरी छात्रवृत्ति परीक्षा -2025स्कॉलरशिपकक्षा-12 मॉडल पेपरकक्षा-11 मॉडल पेपरकक्षा-10 मॉडल पेपरकक्षा-9 मॉडल पेपरबीए बीएससी मॉडल पेपरIGNOU Solved Guess Papersइग्नू पाठ्यक्रमइग्नू के पिछले वर्षों के प्रश्नपत्रइग्नू अध्ययन सामग्रीरिजल्टअन्य

nth term of the A.P.: – 1/3, 4/3, 3 ,… is

On: February 18, 2026 8:16 AM
Follow Us:

nth term of the A.P.: – 1/3, 4/3, 3 ,…in
(A) (5n – 9)/3
(B) (5n – 6)/3
(C) (3n – 4)/3
(D) (3n + 2)/3

Given A.P.:13,  43,  3,-\frac{1}{3}, \; \frac{4}{3}, \; 3, \dotsIdentify first term (a)

a=13a = -\frac{1}{3}Find common difference (d)

d=43(13)d = \frac{4}{3} – \left(-\frac{1}{3}\right)d=43+13=53d = \frac{4}{3} + \frac{1}{3} = \frac{5}{3}

Check with next terms:343=9343=533 – \frac{4}{3} = \frac{9}{3} – \frac{4}{3} = \frac{5}{3}So,d=53d = \frac{5}{3}Use nth term formula of A.P.

an=a+(n1)da_n = a + (n-1)dan​=a+(n−1)d

Substitute values:an=13+(n1)53a_n = -\frac{1}{3} + (n-1)\frac{5}{3}Simplify

an=13+5(n1)3a_n = -\frac{1}{3} + \frac{5(n-1)}{3}an​=−31​+35(n−1)​

Take common denominator 3:an=1+5(n1)3a_n = \frac{-1 + 5(n-1)}{3}an​=3−1+5(n−1)​

Now expand:=1+5n53= \frac{-1 + 5n – 5}{3}=5n63= \frac{5n – 6}{3}

    5n63\boxed{\frac{5n – 6}{3}}

    Join WhatsApp

    Join Now

    Join Telegram

    Join Now

    Leave a comment

    error: Content is protected !!